Cloning and characterization of the beta subunit of human proximal sequence element-binding transcription factor and its involvement in transcription of small nuclear RNA genes by RNA polymerases II and III

Author:

Bai L1,Wang Z1,Yoon J B1,Roeder R G1

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, Rockcfeller University, New York, New York 10021, USA.

Abstract

The proximal sequence element (PSE)-binding transcription factor (PTF), which binds the PSE of both RNA polymerase II- and RNA polymerase III-transcribed mammalian small nuclear RNA (snRNA) genes, is essential for their transcription. We previously reported the purification of human PTF, a complex of four subunits, and the molecular cloning and characterization of PTF gamma and delta subunits. Here we describe the isolation and expression of a cDNA encoding PTF beta, as well as functional studies using anti-PTF beta antibodies. Native PTF beta, in either protein fractions or a PTF-Oct-1-DNA complex, can be recognized by polyclonal antibodies raised against recombinant PTF beta. Immunodepletion studies show that PTF beta is required for transcription of both classes of snRNA genes in vitro. In addition, immunoprecipitation analyses demonstrate that substantial and similar molar amounts of TATA-binding protein (TBP) and TFIIIB90 can weakly associate with PTF at low salt conditions, but this association is dramatically reduced at high salt concentrations. Along with our previous demonstration of both physical interactions between PTF gamma/PTF delta and TBP and the involvement of TFIIIB90 in the transcription of class III snRNA genes, these results are consistent with the notion that a TBP-containing complex related to TFIIIB is required for the transcription of class III snRNA genes, and acts through weak interaction with the four-subunit PTF.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference27 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1993. Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience New York.

2. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei;Dignam J. D.;Nucleic Acids Res.,1983

3. The human U1 snRNA promoter correctly initiates transcription in vitro and is activated by PSE1;Gunderson S. I.;Genes Dev.,1990

4. Harlow E. and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.

5. A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerase II and III;Henry R. W.;Nature (London),1995

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3