Time-Resolved Determination of the CcpA Regulon of Lactococcus lactis subsp. cremoris MG1363

Author:

Zomer Aldert L.1,Buist Girbe1,Larsen Rasmus1,Kok Jan1,Kuipers Oscar P.1

Affiliation:

1. Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands

Abstract

ABSTRACT Carbon catabolite control protein A (CcpA) is the main regulator involved in carbon catabolite repression in gram-positive bacteria. Time series gene expression analyses of Lactococcus lactis MG1363 and L. lactis MG1363Δ ccpA using DNA microarrays were used to define the CcpA regulon of L. lactis . Based on a comparison of the transcriptome data with putative CcpA binding motifs ( cre sites) in promoter sequences in the genome of L. lactis , 82 direct targets of CcpA were predicted. The main differences in time-dependent expression of CcpA-regulated genes were differences between the exponential and transition growth phases. Large effects were observed for carbon and nitrogen metabolic genes in the exponential growth phase. Effects on nucleotide metabolism genes were observed primarily in the transition phase. Analysis of the positions of putative cre sites revealed that there is a link between either repression or activation and the location of the cre site within the promoter region. Activation was observed when putative cre sites were located upstream of the hexameric −35 sequence at an average position of −56.5 or further upstream with decrements of 10.5 bp. Repression was observed when the cre site was located in or downstream of putative −35 and −10 sequences. The highest level of repression was observed when the cre site was present at a defined side of the DNA helix relative to the canonical −10 sequence. Gel retardation experiments, Northern blotting, and enzyme assays showed that CcpA represses its own expression and activates the expression of the divergently oriented prolidase-encoding pepQ gene, which constitutes a link between regulation of carbon metabolism and regulation of nitrogen metabolism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3