Fructose Utilization in Lactococcus lactis as a Model for Low-GC Gram-Positive Bacteria: Its Regulator, Signal, and DNA-Binding Site

Author:

Barrière Charlotte1,Veiga-da-Cunha Maria2,Pons Nicolas1,Guédon Eric1,van Hijum Sacha A. F. T.3,Kok Jan3,Kuipers Oscar P.3,Ehrlich Dusko S.1,Renault Pierre1

Affiliation:

1. Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France

2. Groupe de Recherches Métaboliques, Christian de Duve Institute of Cellular Pathology, 75 av. Hippocrate, B-1200 Brussels, Belgium

3. Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

Abstract

ABSTRACT In addition to its role as carbon and energy source, fructose metabolism was reported to affect other cellular processes, such as biofilm formation by streptococci and bacterial pathogenicity in plants. Fructose genes encoding a 1-phosphofructokinase and a phosphotransferase system (PTS) fructose-specific enzyme IIABC component reside commonly in a gene cluster with a DeoR family regulator in various gram-positive bacteria. We present a comprehensive study of fructose metabolism in Lactococcus lactis , including a systematic study of fru mutants, global messenger analysis, and a molecular characterization of its regulation. The fru operon is regulated at the transcriptional level by both FruR and CcpA and at the metabolic level by inducer exclusion. The FruR effector is fructose-1-phosphate (F1P), as shown by combined analysis of transcription and measurements of the intracellular F1P pools in mutants either unable to produce this metabolite or accumulating it. The regulation of the fru operon by FruR requires four adjacent 10-bp direct repeats. The well-conserved organization of the fru promoter region in various low-GC gram-positive bacteria, including CRE boxes as well as the newly defined FruR motif, suggests that the regulation scheme defined in L. lactis could be applied to these bacteria. Transcriptome profiling of fruR and fruC mutants revealed that the effect of F1P and FruR regulation is limited to the fru operon in L. lactis . This result is enforced by the fact that no other targets for FruR were found in the available low-GC gram-positive bacteria genomes, suggesting that additional phenotypical effects due to fructose metabolism do not rely directly on FruR control, but rather on metabolism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3