Regulation of d -Xylose Metabolism in Caulobacter crescentus by a LacI-Type Repressor

Author:

Stephens Craig1,Christen Beat2,Watanabe Kelly1,Fuchs Thomas2,Jenal Urs2

Affiliation:

1. Biology Department, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053

2. Biozentrum, University of Basel, Klingelbergstrasse 70, 4054 Basel, Switzerland

Abstract

ABSTRACT In the oligotrophic freshwater bacterium Caulobacter crescentus , d -xylose induces expression of over 50 genes, including the xyl operon, which encodes key enzymes for xylose metabolism. The promoter (P xylX ) controlling expression of the xyl operon is widely used as a tool for inducible heterologous gene expression in C. crescentus . We show here that P xylX and at least one other promoter in the xylose regulon (P xylE ) are controlled by the CC3065 ( xylR ) gene product, a LacI-type repressor. Electrophoretic gel mobility shift assays showed that operator binding by XylR is greatly reduced in the presence of d -xylose. The data support the hypothesis that there is a simple regulatory mechanism in which XylR obstructs xylose-inducible promoters in the absence of the sugar; the repressor is induced to release DNA upon binding d -xylose, thereby freeing the promoter for productive interaction with RNA polymerase. XylR also has an effect on glucose metabolism, as xylR mutants exhibit reduced expression of the Entner-Doudoroff operon and their ability to utilize glucose as a sole carbon and energy source is compromised.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3