D-Xylose Blocks the Broad Negative Regulation of XylR on Lipid Metabolism and Affects Multiple Physiological Characteristics in Mycobacteria

Author:

Wang Kun1,Cui Xujie1,Ling Xiaocui1,Chen Jiarui1,Zheng Jiachen1,Xiang Yuling1,Li Weihui1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China

Abstract

D-xylose is the most abundant fermentable pentose, which usually represents an architectural component of the bacterial cell wall. However, its regulatory function and the involved signaling pathway in bacteria remain largely unclear. Here, we show that D-xylose can act as a signaling molecule to regulate the lipid metabolism and affect multiple physiological characteristics in mycobacteria. D-xylose directly interacts with XylR and inhibits its DNA-binding ability, thus blocking XylR-mediated repression. The xylose inhibitor, XylR, plays a global regulatory role and affects the expression of 166 mycobacterial genes that are involved in lipid synthesis and metabolism. Furthermore, we show that the xylose-dependent gene regulation of XylR affects the multiple physiological characteristics of Mycobacterium smegmatis, including bacterial size, colony phenotype, biofilm formation, cell aggregation, and antibiotic resistance. Finally, we found that XylR inhibited the survival of Mycobacterium bovis BCG in the host. Our findings provide novel insights into the molecular mechanism of lipid metabolism regulation and its correlation with bacterial physiological phenotypes.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Guangxi Science Fund for Distinguished Young Scholars

Ba-Gui Scholar Program of Guangxi

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3