The LysR-Type Nitrogen Assimilation Control Protein Forms Complexes with Both Long and Short DNA Binding Sites in the Absence of Coeffectors

Author:

Rosario Christopher J.1,Frisch Ryan L.1,Bender Robert A.1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109-1048

Abstract

ABSTRACT Most LysR-type transcriptional regulators (LTTRs) function as tetramers when regulating gene expression. The nitrogen assimilation control protein (NAC) generally functions as a dimer when binding to DNA and activating transcription. However, at some sites, NAC binds as a tetramer. Like many LTTRs, NAC tetramers can recognize sites with long footprints (74 bp for the site at nac ) with a substantial DNA bend or short footprints (56 bp for the site at cod ) with less DNA bending. However, unlike other LTTRs, NAC can recognize both types of sites in the absence of physiologically relevant coeffectors, suggesting that the two conformers of the NAC tetramer (extended and compact) are interchangeable without the need for any modification to induce or stabilize the change. In order for NAC to bind as a tetramer, three interactions must exist: an interaction between the two NAC dimers and an interaction between each NAC dimer and its corresponding binding site. The interaction between one dimer and its DNA site can be weak (recognizing a half-site rather than a full dimer-binding site), but the other two interactions must be strong. Since the conformation of the NAC tetramer (extended or compact) is determined by the nature of the DNA site without the intervention of a small molecule, we argue that the coeffector that determines the conformation of the NAC tetramer is the DNA site to which it binds.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3