Dendritic Cells Efficiently Induce Protective Antiviral Immunity

Author:

Ludewig Burkhard1,Ehl Stephan1,Karrer Urs1,Odermatt Bernhard1,Hengartner Hans1,Zinkernagel Rolf M.1

Affiliation:

1. Institute of Experimental Immunology, CH-8091 Zürich, Switzerland

Abstract

ABSTRACT Cytotoxic T lymphocytes (CTL) are essential for effective immunity to various viral infections. Because of the high speed of viral replication, control of viral infections imposes demanding functional and qualitative requirements on protective T-cell responses. Dendritic cells (DC) have been shown to efficiently acquire, transport, and present antigens to naive CTL in vitro and in vivo. In this study, we assessed the potential of DC, either pulsed with the lymphocytic choriomeningitis virus (LCMV)-specific peptide GP33-41 or constitutively expressing the respective epitope, to induce LCMV-specific antiviral immunity in vivo. Comparing different application routes, we found that only 100 to 1,000 DC had to reach the spleen to achieve protective levels of CTL activation. The DC-induced antiviral immune response developed rapidly and was long lasting. Already at day 2 after a single intravenous immunization with high doses of DC (1 × 10 5 to 5 × 10 5 ), mice were fully protected against LCMV challenge infection, and direct ex vivo cytotoxicity was detectable at day 4 after DC immunization. At day 60, mice were still protected against LCMV challenge infection. Importantly, priming with DC also conferred protection against infections in which the homing of CTL into peripheral organs is essential: DC-immunized mice rapidly cleared an infection with recombinant vaccinia virus-LCMV from the ovaries and eliminated LCMV from the brain, thereby avoiding lethal choriomeningitis. A comparison of DC constitutively expressing the GP33-41 epitope with exogenously peptide-pulsed DC showed that in vivo CTL priming with peptide-loaded DC is not limited by turnover of peptide-major histocompatibility complex class I complexes. We conclude that the priming of antiviral CTL responses with DC is highly efficient, rapid, and long lasting. Therefore, the use of DC should be considered as an efficient means of immunization for antiviral vaccination strategies.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3