Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone.

Author:

Austyn J M1,Kupiec-Weglinski J W1,Hankins D F1,Morris P J1

Affiliation:

1. Nuffield Department of Surgery, University of Oxford, United Kingdom.

Abstract

Using quantitative techniques we have shown elsewhere that dendritic cells (DC) migrate from blood into the spleen, under the control of T cells. Here we traced the localization of DC within the spleen and sought to explain the means by which they entered. DC were labeled with a fluorochrome, Hoescht 33342, and injected intravenously. Spleens were removed 3 or 24 h later and DC were visualized within particular areas that were defined by mAbs and FITC anti-Igs. At 3 h most DC were in the red pulp, whereas by 24 h the majority had homed to T-dependent areas of the white pulp and may have become interdigitating cells. Lymphoid DC, isolated from spleen and perhaps normally present in blood, may thus be a migratory stage distinct from the relatively fixed interdigitating cells. We also developed a frozen section assay to investigate the interaction of DC with various lymphoid elements. When DC were incubated on sections of spleen, at 37 degrees C but not at 4 degrees C they attached specifically within the marginal zone and did not bind to T areas; in contrast, macrophages attached only to red pulp and T cells did not bind specifically. However, DC did not bind to sections of mesenteric lymph node, whereas T cells localized in particular regions at 4 degrees C but not at 37 degrees C, probably the high endothelial venules. DC may thus express "homing receptors," similar to those of T cells, for certain endothelia. We propose that T cells can modify the vascular endothelium in certain areas to allow egress of DC from the bloodstream.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3