Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies

Author:

Váchová Libuše1ORCID,Plocek Vítězslav2ORCID,Maršíková Jana2ORCID,Rešetárová Stanislava1ORCID,Hatáková Ladislava2,Palková Zdena2ORCID

Affiliation:

1. Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic

2. Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic

Abstract

ABSTRACT Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation. IMPORTANCE In nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.

Funder

MEYS

GAUK

Czech Academy of Sciences

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3