Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures

Author:

Allen Chris1,Büttner Sabrina2,Aragon Anthony D.1,Thomas Jason A.1,Meirelles Osorio3,Jaetao Jason E.1,Benn Don1,Ruby Stephanie W.4,Veenhuis Marten5,Madeo Frank2,Werner-Washburne Margaret1

Affiliation:

1. Department of Biology

2. Institute of Molecular Biology, Biochemistry, and Microbiology, Karl-Franzens University, 8010 Graz, Austria

3. Department of Mathematics and Statistics,

4. Department of Molecular Genetics and Microbiology, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131

5. Department of Eukaryotic Microbiology, University of Groningen, Kerklaan 30, 9750 AA Haren, Netherlands

Abstract

Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G0 state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3