Yeast colonies synchronise their growth and development

Author:

Palkova Z.1,Forstova J.1

Affiliation:

1. Department of Genetics and Microbiology, Charles University, Vinicna 5, Czech Republic. zdenap@prfdec.natur.cuni.cz.

Abstract

The ability to emit and receive signals over long distances is one of the characteristic attributes of multicellular organisms. Such communication can be mediated in different manners (by chemical compounds, light waves, acoustic waves etc.) and usually is reflected in the behaviour of the communicating organisms. Recently, we reported that individual yeast colonies, organised multicellular structures, can also communicate at long distance by means of volatile ammonia, which is produced by colonies in pulses separated by acidification of the medium. Here, we demonstrate that the colony that first reached the stage of intense ammonia production induces ammonia production response in surrounding colonies regardless of their age, causing the synchronisation of their NH(3) pulses and, consequently, the mutual affection of their growth. Also an artificial source of ammonia (but neither NH(4)(+) nor NaOH gradients) can immediately induce the ammonia production even in the colony starting its acidic stage of the development. The repeated transition of Candida mogii colonies from the acidic phase to the phase of intensive ammonia production is accompanied by dramatic changes in colony morphology and also in cell morphology and growth. Relatively smooth colonies in the acidic phase are formed by growing pseudohyphae. After ammonia induction, pseudohyphae decompose into non-dividing yeast-like cells, which rearrange themselves into ruffled spaghetti-like structures. The synchronisation of colony growth, that also exists between yeast colonies of different genera, could be important in establishing their optimal distribution in a natural habitat.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3