Affiliation:
1. School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, People’s Republic China
Abstract
This work characterized a novel endotype xanthanase, MiXen, and elucidated that the C-terminal carbohydrate-binding module of MiXen could drastically enhance the hydrolysis activity of the enzyme toward highly ordered xanthan. Both the sequence and structural analysis demonstrated that the catalytic domain and carbohydrate-binding module of MiXen belong to the novel branch of the GH9 family and CBMs, respectively. This xanthan cleaver can help further reveal the enzymolysis mechanism of xanthan and provide an efficient tool for the production of molecular modified xanthan with new physicochemical and physiological functions.
Funder
Natural Science Foundation of China
Program for Liaoning Excellent Talents in University
Science and Technology Department of Liaoning
Researsh Initiation Funding for PhDs of Liaoning
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献