Tissue-Specific Transcriptional Targeting of a Replication-Competent Retroviral Vector

Author:

Logg Christopher R.12,Logg Aki1,Matusik Robert J.3,Bochner Bernard H.4,Kasahara Noriyuki125

Affiliation:

1. Institute for Genetic Medicine

2. Departments of Pathology

3. Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

4. Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

5. Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033

Abstract

ABSTRACT The inability of replication-defective viral vectors to efficiently transduce tumor cells in vivo has prevented the successful application of such vectors in gene therapy of cancer. To address the need for more efficient gene delivery systems, we have developed replication-competent retroviral (RCR) vectors based on murine leukemia virus (MLV). We have previously shown that such vectors are capable of transducing solid tumors in vivo with very high efficiency. While the natural requirement of MLV infection for cell division imparts a certain degree of specificity for tumor cells, additional means for confining RCR vector replication to tumor cells are desirable. Here, we investigated the parameters critical for successful tissue-specific transcriptional control of RCR vector replication by replacing various lengths of the MLV enhancer/promoter with sequences derived either from the highly prostate-specific probasin (PB) promoter or from a more potent synthetic variant of the PB promoter. We assessed the transcriptional specificity of the resulting hybrid long terminal repeats (LTRs) and the cell type specificity and efficiency of replication of vectors containing these LTRs. Incorporation of PB promoter sequences effectively restricted transcription from the LTR to prostate-derived cells and imparted prostate-specific RCR vector replication but required the stronger synthetic promoter and retention of native MLV sequences in the vicinity of the TATA box for optimal replicative efficiency and specificity. Our results have thus identified promoter strength and positioning within the LTR as important determinants for achieving both high transduction efficiency and strict cell type specificity in transcriptionally targeted RCR vectors.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3