Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule

Author:

Kim I S1,Sinha S1,de Crombrugghe B1,Maity S N1

Affiliation:

1. Department of Molecular Genetics, M.D. Anderson Cancer Center, Univerity of Texas, Houston 77030, USA.

Abstract

The mammalian CCAAT-binding factor (CBF; also called NF-Y and CP1) is a heterotrimeric protein consisting of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and all of which are present in the CBF-DNA complex. In this study using cross-linking and immunoprecipitation methods, we first established that CBF-B interacts simultaneously with both subunits of the CBF-A-CBF-C heterodimer to form a heterotrimeric CBF molecule. We then performed a mutational analysis of CBF-C to define functional interactions with the other two CBF subunits and with DNA using several in vitro assays and an in vivo yeast two-hybrid system. Our experiments established that the evolutionarily conserved segment of CBF-C, which shows similarities with the histone-fold motif of histone H2A, was necessary for formation of the CBF-DNA complex. The domain of CBF-C which interacts with CBF-A included a large portion of this segment, one that corresponds to the segment of the histone-fold motif in H2A used for interaction with H2B. Two classes of interactions involved in formation of the CBF-A-CBF-C heterodimer were detected; one class, provided by residues in the middle of the interaction domain, was needed for formation of the CBF-A-CBF-C heterodimer. The other, provided by sequences flanking those of the first class was needed for stabilization of the heterodimer. Two separate domains were identified in the conserved segment of CBF-C for interaction with CBF-B; these were located on each side of the CBF-A interaction domain. Since our previous experiments identified a single CBF-B interaction domain in the histone-fold motif of CBF-A, we propose that a tridentate interaction domain in the CBF-A-CBF-C heterodimer interacts with the 21-amino-acid-long subunit interaction domain of CBF-B. Together with our previous mutational analysis of CBF-A (S. Sinha, I.-S. Kim, K.-Y. Sohn, B. de Crombrugghe, and S. N. Maity, Mol. Cell. Biol. 16:328-337, 1996), this study demonstrates that the histone fold-motifs of CBF-A and CBF-C interact with each other to form the CBF-A-CBF-C heterodimer and generate a hybrid surface which then interacts with CBF-B to form the heterotrimeric CBF molecule.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3