Analysis of gene duplication within the Arabidopsis NUCLEAR FACTOR Y, subunit B (NF-YB) protein family reveals domains under both purifying and diversifying selection

Author:

Siriwardana Chamindika L.ORCID,Risinger Jan R.,Carpenter Emily Mills,Holt Ben F.

Abstract

Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog’s ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.

Funder

National Science Foundation

Texas A and M University-Central Texas

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3