Inhibition of OXA-1 β-Lactamase by Penems

Author:

Bethel Christopher R.1,Distler Anne M.2,Ruszczycky Mark W.3,Carey Marianne P.3,Carey Paul R.3,Hujer Andrea M.1,Taracila Magda1,Helfand Marion S.13,Thomson Jodi M.2,Kalp Matthew3,Anderson Vernon E.3,Leonard David A.4,Hujer Kristine M.1,Abe Takao5,Venkatesan Aranapakam M.5,Mansour Tarek S.5,Bonomo Robert A.12

Affiliation:

1. Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio

2. Departments of Pharmacology

3. Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio

4. Grand Valley State College, Grand Valley, Michigan

5. Wyeth Research, Chemical and Screening Sciences, Pearl River, New York

Abstract

ABSTRACT The partnering of a β-lactam with a β-lactamase inhibitor is a highly effective strategy that can be used to combat bacterial resistance to β-lactam antibiotics mediated by serine β-lactamases (EC 3.2.5.6). To this end, we tested two novel penem inhibitors against OXA-1, a class D β-lactamase that is resistant to inactivation by tazobactam. The K i of each penem inhibitor for OXA-1 was in the nM range ( K i of penem 1, 45 ± 8 nM; K i of penem 2, 12 ± 2 nM). The first-order rate constant for enzyme and inhibitor complex inactivation of penems 1 and 2 for OXA-1 β-lactamase were 0.13 ± 0.01 s −1 and 0.11 ± 0.01 s −1 , respectively. By using an inhibitor-to-enzyme ratio of 1:1, 100% inactivation was achieved in ≤900 s and the recovery of OXA-1 β-lactamase activity was not detected at 24 h. Covalent adducts of penems 1 and 2 (changes in molecular masses, +306 ± 3 and +321 ± 3 Da, respectively) were identified by electrospray ionization mass spectrometry (ESI-MS). After tryptic digestion of OXA-1 inactivated by penems 1 and 2, ESI-MS and matrix-assisted laser desorption ionization-time-of-flight MS identified the adducts of 306 ± 3 and 321 ± 3 Da attached to the peptide containing the active-site Ser67. The base hydrolysis of penem 2, monitored by serial 1 H nuclear magnetic resonance analysis, suggested that penem 2 formed a linear imine species that underwent 7-endo-trig cyclization to ultimately form a cyclic enamine, the 1,4-thiazepine derivative. Susceptibility testing demonstrated that the penem inhibitors at 4 mg/liter effectively restored susceptibility to piperacillin. Penem β-lactamase inhibitors which demonstrate high affinities and which form long-lived acyl intermediates may prove to be extremely useful against the broad range of inhibitor-resistant serine β-lactamases present in gram-negative bacteria.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3