Characterization of OXA-25, OXA-26, and OXA-27, Molecular Class D β-Lactamases Associated with Carbapenem Resistance in Clinical Isolates of Acinetobacter baumannii

Author:

Afzal-Shah Mariya1,Woodford Neil1,Livermore David M.1

Affiliation:

1. Antibiotic Resistance Monitoring and Reference Laboratory, Central Public Health Laboratory, London NW9 5HT, United Kingdom

Abstract

ABSTRACT Carbapenem resistance in Acinetobacter spp. is increasingly being associated with OXA-type β-lactamases with weak hydrolytic activity against imipenem and meropenem. Such enzymes were characterized from Acinetobacter isolates collected in Belgium, Kuwait, Singapore, and Spain. The isolates from Spain and Belgium had novel class D β-lactamases that were active against carbapenems. These were designated OXA-25 and OXA-26, respectively, and had >98% amino acid homology with each other and with the OXA-24 enzyme recently described by others from an Acinetobacter isolate collected elsewhere in Spain. The isolate from Singapore had OXA-27 β-lactamase, another novel class D type with only 60% homology to OXA-24, -25, and -26, but with 99% homology to OXA-23 (ARI-1), described previously from an Acinetobacter baumannii isolate collected in Scotland. Sequence data were not obtained for the carbapenem-hydrolyzing OXA enzyme from the isolate from Kuwait; nevertheless, the enzyme was phenotypically similar to OXA-25 and -26. The enzymes OXA-23, -24, -25, -26, and -27 retained the STFK and SXV motifs typical of class D β-lactamases, but the YGN motif was altered to FGN. The KTG motif was retained by OXA-27 and -23 but was replaced by KSG in OXA-24, -25, and -26. OXA-25 and -26 enzymes were strongly active against oxacillin, but unusually for an OXA-type β-lactamase, OXA-27 had apparently weak activity, although measurement was complicated by biphasic kinetics. None of the new enzymes was transmissible to Escherichia coli recipients. Many Acinetobacter isolates are multiresistant to other antibiotics, and the emergence of class D enzymes with carbapenem-hydrolyzing activity is a disturbing development for antimicrobial chemotherapy.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3