Affiliation:
1. UMR5235, CNRS—Université Montpellier 2
2. INSERM, U563, Département d'Oncogenèse, Signalisation et Innovation Thérapeutique
3. Université Toulouse III Paul-Sabatier, Centre de Physiopathologie de Toulouse Purpan, 31300 Toulouse, France
4. Service Commun de Microscopie Electronique, Université Montpellier 2, 34095 Montpellier
Abstract
ABSTRACT
Phosphoinositides are important regulators of diverse cellular functions, and phosphatidylinositol 3-monophosphate (PI3P) is a key element in vesicular trafficking processes. During its intraerythrocytic development, the malaria parasite
Plasmodium falciparum
establishes a sophisticated but poorly characterized protein and lipid trafficking system. Here we established the detailed phosphoinositide profile of
P. falciparum
-infected erythrocytes and found abundant amounts of PI3P, while phosphatidylinositol 3,5-bisphosphate was not detected. PI3P production was parasite dependent, sensitive to a phosphatidylinositol-3-kinase (PI3-kinase) inhibitor, and predominant in late parasite stages. The
Plasmodium
genome encodes a class III PI3-kinase of unusual size, containing large insertions and several repetitive sequence motifs. The gene could not be deleted in
Plasmodium berghei
, and
in vitro
growth of
P. falciparum
was sensitive to a PI3-kinase inhibitor, indicating that PI3-kinase is essential in
Plasmodium
blood stages. For intraparasitic PI3P localization, transgenic
P. falciparum
that expressed a PI3P-specific fluorescent probe was generated. Fluorescence was associated mainly with the membrane of the food vacuole and with the apicoplast, a four-membrane bounded plastid-like organelle derived from an ancestral secondary endosymbiosis event. Electron microscopy analysis confirmed these findings and revealed, in addition, the presence of PI3P-positive single-membrane vesicles. We hypothesize that these vesicles might be involved in transport processes, likely of proteins and lipids, toward the essential and peculiar parasite compartment, which is the apicoplast. The fact that PI3P metabolism and function in
Plasmodium
appear to be substantially different from those in its human host could offer new possibilities for antimalarial chemotherapy.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献