Plasmodium falciparum selectively degrades α-spectrin of infected erythrocytes after invasion

Author:

Zheng Kexin1234ORCID,Li Qilong123ORCID,Jiang Ning123ORCID,Zhang Yanxin123ORCID,Zheng Yuxin123ORCID,Zhang Yiwei123ORCID,Feng Ying123ORCID,Chen Ran123ORCID,Sang Xiaoyu123ORCID,Chen Qijun123ORCID

Affiliation:

1. Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China

2. Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China

3. Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China

4. Engineering Research Center of Food Fermentation Technology, College of Food Science, Shenyang Agricultural University, Shenyang, China

Abstract

ABSTRACT Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not β-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while β-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum -infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3