EVIDENCE FOR THE DE NOVO SYNTHESIS OF THE ALPHA-AMYLASE OF PSEUDOMONAS SACCHAROPHILA

Author:

Eisenstadt Jerome M.1,Klein Harold P.1

Affiliation:

1. Biology Department, Brandeis University, Waltham, Massachusetts

Abstract

Eisenstadt, Jerome M. (Brandeis University, Waltham, Mass.) and Harold P. Klein . Evidence for the de novo synthesis of the alpha-amylase of Pseudomonas saccharophila . J. Bacteriol. 82: 798–807. 1961.—Chloramphenicol at a concentration of 20 μg per ml inhibited the appearance of the inducible α-amylase of Pseudomonas saccharophila . This inhibition was observed when induction was attempted in buffer or in a complete medium. Preinduced cells were also prevented from forming this enzyme under similar conditions. Under all the conditions tested, there was no lag in chloramphenicol inhibition, thus suggesting an absence of any protein precursor in amylase formation. Cells suspended in a complete medium without a nitrogen source lost their capacity to form this enzyme when subsequently induced in buffer. When cells were grown in the presence of radioactive sulfate and then subjected to starvation, the radioactivity of the amino acid pool diminished only slightly. However, examination of the free amino acid pool by paper chromatography showed that the loss of enzyme inducibility was accompanied by the disappearance of glutamine, aspartic acid, and a third, unidentified, compound. Enzyme-forming ability was restored by the addition, to starved cells of casein hydrolysate, glutamate, glutamine, or aspartate. Other amino acids tested were ineffective in this regard. When cells were induced in buffer in the presence of labeled methionine, amylase was formed at a linear rate over a 3-hr period. Furthermore, both the cellular proteins and the extracellular amylase became labeled at a linear rate. These observations are discussed in relation to the problem of protein turnover, and are interpreted as evidence for the de novo synthesis of α-amylase in this organism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3