Detection of an RNase H activity associated with hepadnaviruses

Author:

Oberhaus S M1,Newbold J E1

Affiliation:

1. Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill 27599-7290, USA.

Abstract

Replication of the hepadnavirus DNA genome is accomplished via reverse transcription of an intermediate, pregenomic RNA molecule. This process is likely to be carried out by a virally encoded, multifunctional polymerase which possesses DNA- and RNA-dependent DNA polymerase and RNase H activities. However, the nature of the product(s) of the polymerase gene predicted to mediate these functions is unclear. Biochemical studies of the polymerase protein(s) have been limited by its apparent low abundance in virus particles and, until recently, the inability to express active polymerase protein(s) heterologously. We have used activity gel assays to detect DNA- and RNA-dependent DNA polymerase activities associated with highly purified duck hepatitis B virus (DHBV) core particles (S. M. Oberhaus and J. E. Newbold, J. Virol. 67:6558-6566, 1993). Now we report that the same approach identifies a 35-kDa RNase H activity in association with highly purified DHBV core particles and crude preparations of virions from DHBV-infected ducks and woodchuck hepatitis virus-infected woodchucks. This is the first report of the detection of an hepadnavirus-associated RNase H activity. Its apparent size is smaller than any of the DNA polymerase activities that we detected previously and significantly smaller than the full-length protein predicted from the polymerase open reading frame (p85 for DHBV). These data suggest that the viral polymerase and RNase H activities are separable and that these enzymes may coordinate their activities in vivo by forming a complex.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3