Transcription of the cam operon and camR genes in Pseudomonas putida PpG1

Author:

Fujita M1,Aramaki H1,Horiuchi T1,Amemura A1

Affiliation:

1. Department of Biotechnology, Faculty of Engineering, Fukuyama University, Hiroshima, Japan.

Abstract

In Pseudomonas putida carrying the CAM plasmid, the operon (camDCAB) encoding enzymes involved in the degradation pathway of D-camphor is negatively regulated by the CamR protein, and camR is autorepressed. S1 nuclease mapping revealed that camDCAB and camR were divergently transcribed from overlapping promoters, the transcription start sites were separated by 11 bp, and transcriptions of the cam operon (camDCAB) and camR increased about 10- and 4-fold, respectively, immediately after addition of camphor. The transcriptions of camDCAB and camR were negatively regulated through the interaction of the CamR protein with the one operator located in the overlapping promoter region. In vitro transcription experiments were performed to characterize the regulation of cam genes. The camR promoter was initiated by P. putida RNA polymerase containing sigma 70, but transcription from the camDCAB promoter by sigma 70 holoenzyme was not observed. The purified CamR protein repressed in vitro transcription from the camR promoter. This repression was suppressed by camphor. The RNA polymerase binding region of the camR promoter was identified by using DNase I footprinting. In addition, footprinting studies revealed that the CamR protein and RNA polymerase coexisted on the promoter region in a joint nonproductive complex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference22 articles.

1. Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein;Aiba H.;J. Biol. Chem.,1985

2. Evidence for two functional gal promoters in intact Escherichia coli cells;Aiba H.;J. Biol. Chem.,1981

3. Aramaki H. Y. Sagara K. Takeuchi H. Koga and T. Horiuchi. Unpublished data.

4. Aramaki H. Y. Sagara M. Yoshida M. Hosoi and T. Horiuchi. Submitted for publication.

5. Microbiological degradation of (+)-camphor;Bradshaw W. H.;J. Am. Chem. Soc.,1959

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3