Abstract
ABSTRACTProkaryotic transcription factors can be repurposed as analytical and synthetic tools for precise chemical measurement and regulation. Monoterpenes encompass a broad chemical family that are commercially valuable as flavors, cosmetics, and fragrances, but have proven difficult to measure, especially in cells. Herein, we develop genetically-encoded, generalist monoterpene biosensors by using directed evolution to expand the effector specificity of the camphor-responsive TetR-family regulator CamR from Pseudomonas putida. Using a novel negative selection coupled with a high-throughput positive screen (Seamless Enrichment of Ligand-Inducible Sensors, SELIS), we evolve CamR biosensors that can recognize four distinct monoterpenes: borneol, fenchol, eucalyptol, and camphene. Different evolutionary trajectories surprisingly yielded common mutations, emphasizing the utility of CamR as a platform for creating generalist biosensors. Systematic promoter optimization driving the reporter increased the system’s signal-to-noise ratio to 150-fold. These sensors can serve as a starting point for the high-throughput screening and dynamic regulation of bicyclic monoterpene production strains.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献