Evolving a generalist biosensor for bicyclic monoterpenes

Author:

d’Oelsnitz SimonORCID,Nguyen VylanORCID,Alper Hal S.ORCID,Ellington Andrew D.ORCID

Abstract

ABSTRACTProkaryotic transcription factors can be repurposed as analytical and synthetic tools for precise chemical measurement and regulation. Monoterpenes encompass a broad chemical family that are commercially valuable as flavors, cosmetics, and fragrances, but have proven difficult to measure, especially in cells. Herein, we develop genetically-encoded, generalist monoterpene biosensors by using directed evolution to expand the effector specificity of the camphor-responsive TetR-family regulator CamR from Pseudomonas putida. Using a novel negative selection coupled with a high-throughput positive screen (Seamless Enrichment of Ligand-Inducible Sensors, SELIS), we evolve CamR biosensors that can recognize four distinct monoterpenes: borneol, fenchol, eucalyptol, and camphene. Different evolutionary trajectories surprisingly yielded common mutations, emphasizing the utility of CamR as a platform for creating generalist biosensors. Systematic promoter optimization driving the reporter increased the system’s signal-to-noise ratio to 150-fold. These sensors can serve as a starting point for the high-throughput screening and dynamic regulation of bicyclic monoterpene production strains.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. Anuj Pathak . High-Throughput Screening: Technologies and Global Markets. BCC Research. PHM205A (2019).

2. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds;Molecules,2021

3. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications;Biotechnol. Adv,2017

4. A genome-wide approach for identification and characterisation of metabolite-inducible systems;Nat. Commun,2020

5. Design and Selection of a Synthetic Feedback Loop for Optimizing Biofuel Tolerance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3