Transcriptional and Translational Regulation of α-Acetolactate Decarboxylase of Lactococcus lactis subsp. lactis

Author:

Goupil-Feuillerat Nathalie1,Corthier Gérard2,Godon Jean-Jacques1,Ehrlich S. Dusko1,Renault Pierre1

Affiliation:

1. Unité de Génétique Microbienne1 and

2. Unité d'Ecologie et de Physiologie du Système Digestif,2Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France

Abstract

ABSTRACT The α-acetolactate decarboxylase (ALDC) gene, aldB , is the penultimate gene of the leu-ilv-ald operon, which encodes the three branched-chain amino acid (BCAA) biosynthesis genes in Lactococcus lactis . Its product plays a dual role in the cell: (i) it catalyzes the second step of the acetoin pathway, and (ii) it controls the pool of α-acetolactate during leucine and valine synthesis. It can be transcribed from the two promoters present upstream of the leu and ilv genes (P1 and P2) or independently under the control of its own promoter (P3). In this paper we show that the production of ALDC is limited by two mechanisms. First, the strength of P3 decreases greatly during starvation for BCAAs and under other conditions that generally provoke the stringent response. Second, although aldB is actively transcribed from P1 and P2 during BCAA starvation, ALDC is not significantly produced from these transcripts. The aldB ribosome binding site (RBS) appears to be entrapped in a stem-loop, which is itself part of a more complex RNA folding structure. The function of the structure was studied by mutagenesis, using translational fusions with luciferase genes to assess its activity. The presence of the single stem-loop entrapping the aldB RBS was responsible for a 100-fold decrease in the level of aldB translation. The presence of a supplementary secondary structure upstream of the stem-loop led to an additional fivefold decrease of aldB translation. Finally, the translation of the ilvA gene terminating in the latter structure decreased the level of translation of aldB fivefold more, leading to the complete extinction of the reporter gene activity. Since three leucines and one valine are present among the last six amino acids of the ilvA product, we propose that pausing of the ribosomes during translation could modulate the folding of the messenger, as a function of BCAA availability. The purpose of the structure-dependent regulation could be to ensure the minimal production of ALDC required for the control of the acetolactate pool during BCAA synthesis but to avoid its overproduction, which would dissipate acetolactate. Large amounts of ALDC, necessary for operation of the acetoin pathway, could be produced under favorable conditions from the P3 transcripts, which do not contain the secondary structures.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3