Horizontal Gene Transfer in a Polyclonal Outbreak of Carbapenem-Resistant Acinetobacter baumannii

Author:

Valenzuela Jubelle K.1,Thomas Lee12,Partridge Sally R.1,van der Reijden Tanny3,Dijkshoorn Lenie3,Iredell Jon1

Affiliation:

1. Centre for Infectious Diseases and Microbiology, University of Sydney

2. Institute for Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales 2145, Australia

3. Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

Abstract

ABSTRACT In the last few years, phenotypically carbapenem resistant Acinetobacter strains have been identified throughout the world, including in many of the hospitals and intensive care units (ICUs) of Australia. Genotyping of Australian ICU outbreak-associated isolates by pulsed-field gel electrophoresis of whole genomic DNA indicated that different strains were cocirculating within one hospital. The carbapenem-resistant phenotype of these and other Australian isolates was found to be due to carbapenem-hydrolyzing activity associated with the presence of the bla OXA-23 gene. In all resistant strains examined, the bla OXA-23 gene was adjacent to the insertion sequence ISAba 1 in a structure that has been found in Acinetobacter baumannii strains of a similar phenotype from around the world; bla OXA-51 -like genes were also found in all A. baumannii strains but were not consistently associated with ISAba 1 , which is believed to provide the promoter required for expression of linked antibiotic resistance genes. Most isolates were also found to contain additional antibiotic resistance genes within the cassette arrays of class 1 integrons. The same cassette arrays, in addition to the ISAba 1-bla OXA-23 structure, were found within unrelated strains, but no common plasmid carrying these accessory genetic elements could be identified. It therefore appears that antibiotic resistance genes are readily exchanged between cocirculating strains in epidemics of phenotypically indistinguishable organisms. Epidemiological investigation of major outbreaks should include whole-genome typing as well as analysis of potentially transmissible resistance genes and their vehicles.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3