A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms

Author:

Karsten U,Klimant I,Holst G

Abstract

We developed a noninvasive rapid fluorimetric method for the investigation of growth of adhering (benthic) phototrophic microorganisms. The technique is based on the sensitive detection of the in vivo fluorescence of chlorophylls chlorophyll a and bacteriochlorophyll a and monitors increases in signal over time as an indicator for growth. The growth fluorimeter uses modulated excitation light of blue-light-emitting diodes and a photodiode as the detector. The light-emitting diodes are mounted geometrically in an aluminum housing for efficient and uniform illumination of the bottoms of the growth containers. The fluorimeter was characterized with respect to detection limit and dynamic range. This system is capable of resolving in vivo chlorophyll a concentrations of 0.5 (mu)g liter(sup-1) in cyanobacteria and 0.03 (mu)g liter(sup-1) in diatoms as well as in vivo bacteriochlorophyll a concentrations in phototrophic bacteria of 0.3 (mu)g liter(sup-1), which points to an extremely high sensitivity compared with that of similar available techniques. Thus, the new fluorimeter allows the determination of growth at extremely low cell densities. The instrument was used successfully to measure the growth of several adhering isolates of the filamentous cyanobacterium Microcoleus chthonoplastes from benthic microbial mats in seawater of different salinities. The data obtained demonstrate broad growth responses for all strains, which thus can be characterized as euryhaline organisms.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3