Photosynthetic, Respirational, and Growth Responses of Six Benthic Diatoms from the Antarctic Peninsula as Functions of Salinity and Temperature Variations

Author:

Prelle Lara R.,Schmidt Ina,Schimani Katherina,Zimmermann Jonas,Abarca Nelida,Skibbe OliverORCID,Juchem Desiree,Karsten UlfORCID

Abstract

Temperature and salinity are some of the most influential abiotic parameters shaping biota in aquatic ecosystems. In recent decades, climate change has had a crucial impact on both factors—especially around the Antarctic Peninsula—with increasing air and water temperature leading to glacial melting and the accompanying freshwater increase in coastal areas. Antarctic soft and hard bottoms are typically inhabited by microphytobenthic communities, which are often dominated by benthic diatoms. Their physiology and primary production are assumed to be negatively affected by increased temperatures and lower salinity. In this study, six representative benthic diatom strains were isolated from different aquatic habitats at King George Island, Antarctic Peninsula, and comprehensively identified based on molecular markers and morphological traits. Photosynthesis, respiration, and growth response patterns were investigated as functions of varying light availability, temperature, and salinity. Photosynthesis–irradiance curve measurements pointed to low light requirements, as light-saturated photosynthesis was reached at <70 µmol photons m−2 s−1. The marine isolates exhibited the highest effective quantum yield between 25 and 45 SA (absolute salinity), but also tolerance to lower and higher salinities at 1 SA and 55 SA, respectively, and in a few cases even <100 SA. In contrast, the limnic isolates showed the highest effective quantum yield at salinities ranging from 1 SA to 20 SA. Almost all isolates exhibited high effective quantum yields between 1.5 °C and 25 °C, pointing to a broad temperature tolerance, which was supported by measurements of the short-term temperature-dependent photosynthesis. All studied Antarctic benthic diatoms showed activity patterns over a broader environmental range than they usually experience in situ. Therefore, it is likely that their high ecophysiological plasticity represents an important trait to cope with climate change in the Antarctic Peninsula.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference96 articles.

1. Summary for Policymaker: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Future Arctic climate changes: Adaptation and mitigation time scales

3. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost

4. The role of benthic microalgae in neritic ecosystems;Cahoon;Oceanogr. Mar. Biol. Annu. Rev.,1999

5. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3