Photosynthesis, Respiration, and Growth of Five Benthic Diatom Strains as a Function of Intermixing Processes of Coastal Peatlands with the Baltic Sea

Author:

Prelle Lara R.,Karsten UlfORCID

Abstract

In light of climate change, renaturation of peatlands has become increasingly important, due to their function as carbon sinks. Renaturation processes in the Baltic Sea include removal of coastal protection measures thereby facilitating exchange processes between peatland and Baltic Sea water masses with inhabiting aquatic organisms, which suddenly face new environmental conditions. In this study, two Baltic Sea and three peatland benthic diatom strains were investigated for their ecophysiological response patterns as a function of numerous growth media, light, and temperature conditions. Results clearly showed growth stimulation for all five diatom strains when cultivated in peatland water-based media, with growth dependency on salinity for the Baltic Sea diatom isolates. Nutrient availability in the peatland water resulted in higher growth rates, and growth was further stimulated by the carbon-rich peatland water probably facilitating heterotrophic growth in Melosira nummuloides and two Planothidium sp. isolates. Photosynthesis parameters for all five diatom strains indicated low light requirements with light saturated photosynthesis at <70 µmol photons m−2 s−1 in combination with only minor photoinhibition as well as eurythermal traits with slightly higher temperature width for the peatland strains. Growth media composition did not affect photosynthetic rates.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference61 articles.

1. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea

2. Decomposing Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea

3. PSMSL (Permanent Service for Mean Sea Level), 7.12.2020, Relative Sea Level Trendshttps://www.psmsl.org/products/trends

4. Scenarios for sea level on the Finnish coast;Johansson;Boreal Environ. Res.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3