Characterization of the carbapenem-resistant Acinetobacter baumannii clinical reference isolate BAL062 (CC2:KL58:OCL1): resistance properties and capsular polysaccharide structure

Author:

Shashkov Alexander S.1,Arbatsky Nikolay P.1,Senchenkova Sof’ya N.1,Kasimova Anastasiya A.1,Dmitrenok Andrei S.1,Shneider Mikhail M.2,Knirel Yuriy A.1,Hall Ruth M.3ORCID,Kenyon Johanna J.45ORCID

Affiliation:

1. N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

2. M. M. Shemyakin & Y. A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

3. School of Life and Environmental Science, The University of Sydney, Sydney, Australia

4. Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia

5. School of Pharmacy and Medical Sciences, Health Group, Griffith University, Gold Coast, Australia

Abstract

ABSTRACT The carbapenem-resistant Acinetobacter baumannii isolate BAL062 is a clinical reference isolate used in several recent experimental studies. It is from a ventilator-associated pneumonia (VAP) patient in an intensive care unit at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam in 2009. Here, BAL062 was found to belong to the B sub-lineage of global clone 2 (GC2) isolates in the previously reported outbreak (2008 and 2012) of carbapenem-resistant VAP A. baumannii at the HTD. While related sub-lineage B outbreak isolates were extensively antibiotic-resistant and carry GC2-associated genomic resistance islands, AbGRI1, AbGRI2, and AbGRI3, BAL062 has lost AbGRI3 and three aminoglycoside resistance genes, armA, aacA4, and aphA1 , leading to amikacin, tobramycin and kanamycin susceptibility. The location of Tn 2008 VAR found in the chromosome of this sub-lineage was also corrected. Like many of the outbreak isolates, BAL062 carries the KL58 gene cluster at the capsular polysaccharide (CPS) synthesis locus and an annotation key is provided. As information about K type is important for the development of novel CPS-targeting therapies, the BAL062 K58-type CPS structure was established using NMR spectroscopy. It is most closely related to K2 and K93, sharing similar configurations and linkages between K units, and contains the rare higher monosaccharide, 5,7-diacetamido-3,5,7,9-tetradeoxy- d - glycero - l - manno -non-2-ulosonic acid (5,7-di- N -acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac), the 8-epimer of Pse5Ac7Ac (5,7-di- N -acetylpseudaminic acid). Inspection of publicly available A. baumannii genomes revealed a wide distribution of the KL58 locus in geographically diverse isolates belonging to several sequence types that were recovered over two decades from clinical, animal, and environmental sources. IMPORTANCE Many published experimental studies aimed at developing a clearer understanding of the pathogenicity of carbapenem-resistant Acinetobacter baumannii strains currently causing treatment failure due to extensive antibiotic resistance are undertaken using historic, laboratory-adapted isolates. However, it is ideal if not imperative that recent clinical isolates are used in such studies. The clinical reference isolate characterized here belongs to the dominant A. baumannii GC2 clone causing extensively resistant infections and has been used in various recent studies. The correlation of resistance profiles and resistance gene data is key to identifying genes available for gene knockout and complementation analyses, and we have mapped the antibiotic resistance genes to find candidates. Novel therapies, such as bacteriophage or monoclonal antibody therapies, currently under investigation as alternatives or adjuncts to antibiotic treatment to combat difficult-to-treat CRAb infections often exhibit specificity for specific structural epitopes of the capsular polysaccharide (CPS), the outer-most polysaccharide layer. Here, we have solved the structure of the CPS type found in BAL062 and other extensively resistant isolates. As consistent gene naming and annotation are important for locus identification and interpretation of experimental studies, we also have correlated automatic annotations to the standard gene names.

Funder

Russian Science Foundation

Department of Education and Training | Australian Research Council

DHAC | National Health and Medical Research Council

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3