A benchmark of optimization solvers for genome-scale metabolic modeling of organisms and communities

Author:

Machado Daniel1ORCID

Affiliation:

1. Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract

ABSTRACT Genome-scale metabolic modeling is a powerful framework for predicting metabolic phenotypes of any organism with an annotated genome. For two decades, this framework has been used for the rational design of microbial cell factories. In the last decade, the range of applications has exploded, and new frontiers have emerged, including the study of the gut microbiome and its health implications and the role of microbial communities in global ecosystems. However, all the critical steps in this framework, from model construction to simulation, require the use of powerful linear optimization solvers, with the choice often relying on commercial solvers for their well-known computational efficiency. In this work, I benchmark a total of six solvers (two commercial and four open source) and measure their performance to solve linear and mixed-integer linear problems of increasing complexity. Although commercial solvers are still the fastest, at least two open-source solvers show comparable performance. These results show that genome-scale metabolic modeling does not need to be hindered by commercial licensing schemes and can become a truly open science framework for solving urgent societal challenges. IMPORTANCE Modeling the metabolism of organisms and communities allows for computational exploration of their metabolic capabilities and testing their response to genetic and environmental perturbations. This holds the potential to address multiple societal issues related to human health and the environment. One of the current limitations is the use of commercial optimization solvers with restrictive licenses for academic and non-academic use. This work compares the performance of several commercial and open-source solvers to solve some of the most complex problems in the field. Benchmarking results show that, although commercial solvers are indeed faster, some of the open-source options can also efficiently tackle the hardest problems, showing great promise for the development of open science applications.

Funder

Norges Forskningsråd

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3