Affiliation:
1. Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
2. Department of Biological Sciences, University of Jordan, Amman, Jordan
3. Department of Pediatrics, Charité University Medical Center, Berlin, Germany
4. Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
Abstract
ABSTRACT
Chlamydiaceae
are obligate intracellular bacterial pathogens that strictly depend on host metabolites, such as nucleotides, lipids, and amino acids. Depletion of amino acids in cell culture media results in abnormal chlamydial development in vitro. Surprisingly, enrichment of certain amino acids also retards chlamydial growth. Our experiments revealed that the antichlamydial effects are largely independent of changes in the host cell transcriptome or proteome and in the major signal transduction pathway modulated by amino acids, the mTOR (mammalian target of rapamycin) pathway. Furthermore, the chlamydial growth inhibition induced by leucine, isoleucine, methionine, or phenylalanine was completely reversed by concomitant addition of valine. In contrast, the growth inhibition induced by serine, glycine, or threonine was not reversed by valine addition. Functional characterization of the only predicted chlamydial transporter for branched-chain amino acids, BrnQ, revealed that it can be blocked by leucine, isoleucine, methionine, or phenylalanine but not by serine, glycine, or threonine. This chlamydial transporter is the only known BrnQ homolog possessing specificity for methionine, suggesting a unique strategy for methionine uptake among gram-negative bacteria. The antichlamydial effects of leucine, isoleucine, methionine, and phenylalanine could be explained as competitive inhibition of the BrnQ transporter and subsequent valine starvation.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference44 articles.
1. Abdelrahman, Y. M., and R. J. Belland. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29 : 949-959.
2. Allan, I., and J. H. Pearce. 1983. Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J. Gen. Microbiol. 129 : 2001-2007.
3. Allan, I., and J. H. Pearce. 1983. Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth. J. Gen. Microbiol. 129 : 1991-2000.
4. Interaction of
Chlamydia trachomatis
Serovar L2 with the Host Autophagic Pathway
5. Al-Younes, H. M., J. Gussmann, P. R. Braun, V. Brinkmann, and T. F. Meyer. 2006. Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. J. Med. Microbiol. 55 : 879-886.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献