Peptide Transport in Helicobacter pylori : Roles of Dpp and Opp Systems and Evidence for Additional Peptide Transporters

Author:

Weinberg Michael V.1,Maier Robert J.1

Affiliation:

1. Department of Microbiology, University of Georgia, Athens, Georgia 30602

Abstract

ABSTRACT Despite research into the nutritional requirements of Helicobacter pylori , little is known regarding its use of complex substrates, such as peptides. Analysis of genome sequences revealed putative ABC-type transporter genes for dipeptide ( dppABCDF ) and oligopeptide ( oppABCD ) transport. Genes from each system were PCR amplified, cloned, and disrupted by cassette insertion either individually ( dppA, dppB, dppC, oppA, oppB , and oppC ) or to create double mutants ( dppA oppA, dppB oppB, dppB dppC , and oppB oppC ). Peptide-utilizing abilities of the strains were assessed by monitoring growth in a chemically defined medium where the only source of the essential amino acid isoleucine was from peptides of various lengths (two to nine amino acids long). The dipeptide system mutants lacked the ability to use certain dipeptides, hexapeptides, and nonapeptides. However, these mutants retained some ability to grow with other dipeptides, tripeptides, and tetrapeptides. Of the oligopeptide mutants, only the oppB strain differed significantly from the wild type. This strain showed a wild-type phenotype for growth with longer peptides (hexa- and nonapeptides) while having a decreased ability to utilize di-, tri-, and tetrapeptides. The dppA oppA and dppB oppB mutants showed similar phenotypes to those of the dppA and dppB mutants, respectively. Peptide digestion by metalloproteases was ruled out as the cause for residual peptide transport by growing mutant strains in the presence of either EDTA or EGTA. Degradation products associated with a fluorescein isothiocyanate-labeled hexapeptide (plus cells) were minimal. An as yet unidentified peptide transport system(s) in H. pylori is proposed to be responsible for the residual transport.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3