Genetic and Transcriptomic Variations for Amoxicillin Resistance in Helicobacter pylori under Cryopreservation

Author:

Han XiuruiORCID,Zhang Yiyao,He Lihua,Fan RuyueORCID,Sun Lu,Fan Dongjie,Gong Yanan,Chen Xiaoli,You Yuanhai,Zhao Fei,Zhang Maojun,Zhang JianzhongORCID

Abstract

Some amoxicillin-resistant strains of H. pylori show a sharp decrease in amoxicillin resistance after freezing. In China, most clinical gastric mucosal specimens are frozen and transported for isolation and drug susceptibility testing for H. pylori, which may lead to an underestimation of the amoxicillin resistance. The objective of this study is to investigated reasons for the decreased amoxicillin resistance after cryopreservation. A high-level amoxicillin-resistant clone (NX24r) was obtained through amoxicillin pressure screening. After cryopreservation at −80 °C for 3 months, the minimum inhibitory concentration (MIC) of NX24r was reduced sharply. Mutations and changes of transcriptome were analyzed after amoxicillin screening and cryopreservation. Mutations in PBP1 (I370T, E428K, T556S) and HefC (M337K, L378F, D976V) were detected in NX24r, which may be the main reason for the induced amoxicillin resistance. No mutations were found in PBP1 or HefC after cryopreservation. However, transcriptome analysis showed that down-regulated genes in the cryopreserved clone were significantly enriched in plasma membrane (GO:0005886), including lepB, secD, gluP, hp0871 and hp1071. These plasma membrane genes are involved in the biosynthesis and transport function of the membrane. The decreased amoxicillin resistance after cryopreservation may be related to the down-regulation of genes involved in membrane structure and transport function.

Funder

National Major Science and Technology Projects of China

Peking Union Medical College Hospital

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3