Diminished priming of neonatal polymorphonuclear leukocytes by lipopolysaccharide is associated with reduced CD14 expression

Author:

Qing G1,Rajaraman K1,Bortolussi R1

Affiliation:

1. Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.

Abstract

Previous research in our laboratory has shown that polymorphonuclear leukocytes (PMN) from neonates are not primed effectively in vitro with lipopolysaccharide (LPS) (from Escherichia coli 0111:B4) compared with priming of adult PMN. This finding led us to speculate that differences between neonatal and adult LPS receptors may account for the lower response by neonatal PMN to LPS. In these experiments, we investigated if CD14 or other LPS receptors contribute to the priming activity of PMN by LPS. We found that unprimed neonatal and adult PMN expressed similar numbers of CD14 (11.6 +/- 9.2 versus 18.6 +/- 2.7 fluorescence units [FlU]; P > 0.05) and LPS-binding sites (2.94 +/- 1.4 versus 4.94 +/- 0.79 FlU; P > 0.05). Monoclonal antibody against CD14 (MY4) did not significantly change the binding of LPS to adult unprimed PMN, suggesting that LPS receptors other than CD14 receptors are predominant on PMN. However, when PMN were pretreated with LPS (10 ng/ml) for 45 min at 37 degrees C, expression of CD14 on adult PMN increased to 33.8 +/- 4.9 FlU (P < 0.05 versus unprimed adult PMN) while that on neonatal PMN showed little change, increasing to 17.2 +/- 10.3 FlU (P > 0.05 versus unprimed neonatal PMN; P < 0.05 versus primed adult PMN). Furthermore, MY4 specifically blocked oxidative-radical production from PMN primed with LPS (10 ng/ml) compared with that from control PMN (P < 0.01). These studies suggest that LPS primes PMN by activating CD14 expression. We conclude that lower expression of CD14 or failure to up-regulate CD14 after LPS pretreatment contributes to the inability of neonatal PMN to be primed by LPS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3