Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems

Author:

Bortolussi R1,Vandenbroucke-Grauls C M1,van Asbeck B S1,Verhoef J1

Affiliation:

1. Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.

Abstract

Listeria monocytogenes, a gram-positive motile bacterium which can cause severe bacterial infection in humans, is considered to be pathogenic by virtue of its ability to resist intracellular killing. Since the mechanism of intracellular survival is poorly understood, we assessed the sensitivity of L. monocytogenes to several potent antibacterial products. Phorbol myristate acetate (PMA)-stimulated polymorphonuclear cells (PMNs) produced extracellular antibacterial products which were inhibited completely by catalase, suggesting a role for oxidative agents in this process. L. monocytogenes in logarithmic (log) growth phase resisted PMA-stimulated PMN extracellular products significantly more than L. monocytogenes in stationary (stat) growth phase or Escherichia coli (three strains) in either phase of growth. The role of oxidative agents was studied further by using xanthine oxidase-xanthine, glucose oxidase-glucose, and myeloperoxidase enzyme systems to generate hydroxyl radical (.OH), hydrogen peroxide (H2O2), and hypochlorous acid (OCl-), respectively. L. monocytogenes in log phase resisted the antibacterial products of these enzyme systems under conditions which produced superoxide (O2-) and H2O2 at concentrations similar to those produced extracellularly by PMA-stimulated PMNs, while stat-growth-phase L. monocytogenes and E. coli in either phase of growth were susceptible. Antibacterial activity could be blocked or inhibited by exogenous catalase (for all oxygen radical-generating systems), mannitol, or desferoxamine (for xanthine oxidase-xanthine) and alanine (for myeloperoxidase), suggesting that .OH and OCl- were responsible for this activity. Log-phase L. monocytogenes had 2.5-fold higher bacteria-associated catalase activity, as compared with stat-phase L. monocytogenes. These experiments, therefore, suggest that log-phase L. monocytogenes resists oxidative antibacterial agents by producing sufficient catalase to inactivate these products. This may contribute to the ability of L. monocytogenes to survive intracellularly.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference39 articles.

1. Crystalline myeloperoxidase;Agner K.;Acta Chem. Scand.,1958

2. The respiratory burst of phagocytes;Babior B.;J. Clin. Invest.,1984

3. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase;Babior B. M.;J. Lab. Clin. Med.,1975

4. Isolation procedure and some properties of myeloperoxidase from human leukocytes;Bakhenist A. R. J.;Biochim. Biophys. Acta 5Z4:45-54.,1978

5. Opsonization of Listeria monocytogenes type 4b by human adult and newborn sera;Bortolussi R.;Infect. Immun.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3