Monoclonal Antibody to CD14, TLR4, or CD11b: Impact of Epitope and Isotype Specificity on ROS Generation by Human Granulocytes and Monocytes

Author:

Kabanov Dmitry S.1ORCID,Grachev Sergey V.12ORCID,Prokhorenko Isabella R.1ORCID

Affiliation:

1. Department of Molecular Biomedicine, Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia

2. Department of Human Pathology of the Institute of Clinical Medicine, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov’s First Moscow State Medical University of Russian Healthcare Ministry (Sechenov University), Moscow 119991, Russia

Abstract

Lipopolysaccharides (LPSs or endotoxins) from Gram-negative bacteria represent pathogen-associated molecular patterns (PAMPs) that are recognized by CD14 and Toll-like receptor 4 (TLR4). Lipopolysaccharides prime polymorphonuclear leukocytes (PMNs) for substantial production of reactive oxygen species (ROS) during its response to secondary stimuli such as chemoattractants or pathogens. The excessive ROS production can damage surrounding host tissues, thereby amplifying the inflammatory reaction caused by pathogens. Today, specific antibodies against CD14, TLR4, and CD11b are being used as the essential tools to elucidate the role of these receptors in acute inflammation and some of these antibodies have advised as therapeutic agents for clinical use. Because each antibody has two antigen-binding arms [F(ab)2] and one Fc arm, its effect on cellular response is much more complicated rather than simple blockage of target receptor. In fact, IgG antibody, once bound to target receptor, engages Fc receptors γ (FcγRs) and thereby is able to activate the adaptive immune system. The consequences of antibody-dependent binary heterotypic association of CD14, TLR4, or CD11b with FcγRs as well as homotypic one on ROS production are not well elucidated. Moreover, the consequences of antigenic recognition of CD14, TLR4, or CD11b by specific F(ab)2 fragments are not always investigated. In this review, we will discuss known mechanisms underlying the therapeutic efficiency of CD14, TLR4, and CD11b/CD18 antibodies with a focus on LPS-dependent ROS or cytokine production by PMNs or monocytes. The impacts of F(ab)2 as well as antibody IgG subclasses (isotypes) in therapeutic efficiency or agonistic potency of known antibodies against abovementioned receptors are presented. We also pay attention to how the efficiency of different IgG antibody subclasses is modulated during LPS-induced inflammation and by production of priming agents such as interferon γ (IFN-γ). Our review reinforces the molecular targets and therapeutic approaches to amelioration of harmful consequences of excessive activation of human pattern recognition receptors.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3