Ehrlichia chaffeensis TRP120 Interacts with a Diverse Array of Eukaryotic Proteins Involved in Transcription, Signaling, and Cytoskeleton Organization

Author:

Luo Tian1,Kuriakose Jeeba A.1,Zhu Bing1,Wakeel Abdul1,McBride Jere W.12345

Affiliation:

1. Departments of Pathology, University of Texas Medical Branch, Galveston, Texas 77555

2. Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555

3. Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555

4. Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555

5. Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555

Abstract

ABSTRACT Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions between E. chaffeensis 47-kDa tandem repeat (TR) protein (TRP47) and the eukaryotic host cell have been described. In this investigation, yeast ( Saccharomyces cerevisiae ) two-hybrid analysis demonstrated that E. chaffeensis -secreted tandem repeat protein 120 (TRP120) interacts with a diverse group of host cell proteins associated with major biological processes, including transcription and regulation, cell signaling, protein trafficking, and actin cytoskeleton organization. Twelve target proteins with the highest frequency of interaction with TRP120 were confirmed by cotransformation in yeast. Host targets, including human immunoglobulin lambda locus (IGL), cytochrome c oxidase subunit II (COX2), Golgi-associated gamma adaptin ear-containing ARF binding protein 1 (GGA1), polycomb group ring finger 5 (PCGF5), actin gamma 1 (ACTG1), and unc-13 homolog D (UNC13D; Caenorhabditis elegans ), colocalized strongly with TRP120 in HeLa cells and with E. chaffeensis dense-cored morulae and areas adjacent to morulae in the host cytoplasm. The TR domain of TRP120 interacted only with PCGF5, indicating that distinct TRP120 domains contribute to specific host target interactions and that multiple domains are required to reconstitute TRP120 interactions with other host targets. Three previously defined molecular interactions between TRP47 and host proteins, PCGF5, IGLL1, and CAP1, were also associated with TRP120, demonstrating that molecular cross talk occurs between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that reprogram the host cell.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3