ATP-Binding Site Lesions in FtsE Impair Cell Division

Author:

Arends S. J. Ryan1,Kustusch Ryan J.1,Weiss David S.1

Affiliation:

1. Department of Microbiology, University of Iowa, Iowa City, Iowa 52242

Abstract

ABSTRACT FtsE and FtsX of Escherichia coli constitute an apparent ABC transporter that localizes to the septal ring. In the absence of FtsEX, cells divide poorly and several membrane proteins essential for cell division are largely absent from the septal ring, including FtsK, FtsQ, FtsI, and FtsN. These observations, together with the fact that ftsE and ftsX are cotranscribed with ftsY , which helps to target some proteins for insertion into the cytoplasmic membrane, suggested that FtsEX might contribute to insertion of division proteins into the membrane. Here we show that this hypothesis is probably wrong, because cells depleted of FtsEX had normal amounts of FtsK, FtsQ, FtsI, and FtsN in the membrane fraction. We also show that FtsX localizes to septal rings in cells that lack FtsE, arguing that FtsX targets the FtsEX complex to the ring. Nevertheless, both proteins had to be present to recruit further Fts proteins to the ring. Mutant FtsE proteins with lesions in the ATP-binding site supported septal ring assembly (when produced together with FtsX), but these rings constricted poorly. This finding implies that FtsEX uses ATP to facilitate constriction rather than assembly of the septal ring. Finally, topology analysis revealed that FtsX has only four transmembrane segments, none of which contains a charged amino acid. This structure is not what one would expect of a substrate-specific transmembrane channel, leading us to suggest that FtsEX is not really a transporter even though it probably has to hydrolyze ATP to support cell division.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3