Aerobic Anoxygenic Photosynthesis in Roseobacter Clade Bacteria from Diverse Marine Habitats

Author:

Allgaier Martin1,Uphoff Heike1,Felske Andreas1,Wagner-Döbler Irene1

Affiliation:

1. Department of Microbiology, German Research Institute for Biotechnology, D-38124 Braunschweig, Germany

Abstract

ABSTRACT The marine Roseobacter clade comprises several genera of marine bacteria related to the uncultured SAR83 cluster, the second most abundant marine picoplankton lineage. Cultivated representatives of this clade are physiologically heterogeneous, and only some have the capability for aerobic anoxygenic photosynthesis, a process of potentially great ecological importance in the world's oceans. In an attempt to correlate phylogeny with ecology, we investigated the diversity of Roseobacter clade strains from various marine habitats (water samples, biofilms, laminariae, diatoms, and dinoflagellate cultures) by using the 16S rRNA gene as a phylogenetic marker gene. The potential for aerobic anoxygenic photosynthesis was determined on the genetic level by PCR amplification and sequencing of the pufLM genes of the bacterial photosynthesis reaction center and on the physiological level by detection of bacteriochlorophyll (Bchl) a. A collection of ca. 1,000 marine isolates was screened for members of the marine Roseobacter clade by 16S rRNA gene-directed multiplex PCR and sequencing. The 42 Roseobacter clade isolates found tended to form habitat-specific subclusters. The pufLM genes were detected in two groups of strains from dinoflagellate cultures but in none of the other Roseobacter clade isolates. Strains within the first group (the DFL-12 cluster) also synthesized Bchl a. Strains within the second group (the DFL-35 cluster) formed a new species of Roseovarius and did not produce Bchl a under the conditions investigated here, thus demonstrating the importance of genetic methods for screening of cultivation-dependent metabolic traits. The pufL genes of the dinoflagellate isolates were phylogenetically closely related to pufL genes from Betaproteobacteria , confirming similar previous observations which have been interpreted as indications of gene transfer events.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3