Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae

Author:

Poirel Laurent1,Héritier Claire1,Tolün Venus2,Nordmann Patrice1

Affiliation:

1. Service de Bactériologie-Virologie, Université Paris XI, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 Le Kremlin-Bicêtre, France

2. Department of Microbiology, Istanbul Medical Faculty, Capa, Istanbul, Turkey

Abstract

ABSTRACT Klebsiella pneumoniae strain 11978 was isolated in Turkey in 2001 and was found to be resistant to all β-lactams, including carbapenems. Cloning and expression in Escherichia coli identified five β-lactamases, including two novel oxacillinases. The β-lactamase OXA-48 hydrolyzed imipenem at a high level and was remotely related (less than 46% amino acid identity) to the other oxacillinases. It hydrolyzed penicillins and imipenem but not expanded-spectrum cephalosporins. The bla OXA-48 gene was plasmid encoded and not associated with an integron, in contrast to most of the oxacillinase genes. An insertion sequence, IS 1999 , was found immediately upstream of bla OXA-48 . Another plasmid that encoded a second oxacillinase gene, bla OXA-47 , located inside a class 1 integron was identified in K. pneumoniae 11978. OXA-47 had a narrow spectrum of hydrolysis activity and did not hydrolyze ceftazidime or imipenem, as is found for the β-lactamase (OXA-1) to which it is related. In addition, β-lactamases TEM-1 and SHV-2a were expressed from the same K. pneumoniae isolate. Analysis of the outer membrane proteins of this isolate revealed that it lacked a porin of ca. 36 kDa. Thus, the high-level resistance to β-lactams of this clinical isolate resulted from peculiar β-lactamases and modification of outer membrane proteins.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 803 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3