Genetic characterization of trimethoprim resistance in Haemophilus influenzae

Author:

de Groot R1,Sluijter M1,de Bruyn A1,Campos J1,Goessens W H1,Smith A L1,Hermans P W1

Affiliation:

1. Department of Pediatrics, Sophia Children's Hospital, Erasmus University Rotterdam, The Netherlands.

Abstract

We previously demonstrated that trimethoprim (Tmp) resistance in Haemophilus influenzae is mediated by chromosomally encoded dihydrofolate reductase (DHFR) with a modified primary structure and distinct kinetic properties. To gain insight into the relationship of the DHFR structure and the level of Tmp resistance that it confers on the host bacterium, we cloned and characterized the folH genes of one Tmp-susceptible and two Tmp-resistant H. influenzae strains. Differences were observed between Tmp-susceptible and Tmp-resistant isolates both in the promoter region and in the coding sequences. The effect of differences between H. influenzae folH genes on Tmp susceptibility was investigated in Escherichia coli. Various folH gene hybrids were constructed, and their influence on Tmp susceptibility was determined. Resistance in E. coli mediated by folH from H. influenzae strain R1047 was associated with alterations in the promoter and the central part of folH. In contrast, the E. coli Tmp resistance phenotype associated with the folH gene of H. influenzae R1042 was characterized by alterations in one or more of three amino acid residues at the C-terminal part of the protein. These data indicate that Tmp resistance is not only related to alterations in the promoter region of the folH gene and the Tmp binding domains at the N-terminal and central part of DHFR. Alterations in the C-terminal part may also cause Tmp resistance, probably as a result of a change in secondary structure and the subsequent loss of Tmp binding affinity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3