Molecular cloning and mechanism of trimethoprim resistance in Haemophilus influenzae

Author:

de Groot R1,Campos J1,Moseley S L1,Smith A L1

Affiliation:

1. Division of Infectious Disease, Children's Hospital and Medical Center, Seattle, Washington.

Abstract

We studied 10 trimethoprim-resistant (Tmpr) Haemophilus influenzae isolates for which agar dilution MICs were 10 to greater than 200 micrograms/ml. Trimethoprim resistance was transferred from two Tmpr H. influenzae isolates to a Tmps strain by conjugation or transformation. Wild-type Tmpr strains and Tmpr transcipients did not contain detectable plasmid DNA. The trimethoprim resistance gene was cloned into a cosmid vector, and recombinant plasmids were transduced into Escherichia coli. A 0.50-kilobase intragenic probe derived from a 12.9-kilobase fragment which encoded trimethoprim resistance hybridized with whole-cell DNA from Tmps and Tmpr strains. Southern blot analysis of restricted DNA from isogenic Tmps and Tmpr H. influenzae indicated that acquisition of trimethoprim resistance involved a rearrangement or change in nucleotide sequence. Hybridization was not seen with DNA derived from Tmpr E. coli containing dihydrofolate reductase I, II, and III genes or with Tmpr Neisseria meningitidis, Neisseria gonorrhoeae, and Pseudomonas cepacia. Southern hybridization with 12 multiply resistant encapsulated H. influenzae strains confirmed that the trimethoprim resistance gene was chromosomally mediated. Dihydrofolate reductase activity was significantly greater in cell sonicate supernatants of Tmpr strains in comparison with isogenic Tmps recipients. Differences were not found in the trimethoprim inhibition profile of dihydrofolate reductase activity in Tmps and Tmpr strains. We conclude that the mechanism of trimethoprim resistance in H. influenzae is overproduction of chromosomally located dihydrofolate reductase.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3