Adhesion-Aggregation and Inactivation of Poliovirus 1 in Groundwater Stored in a Hydrophobic Container

Author:

Gassilloud Benoît1,Gantzer Christophe1

Affiliation:

1. Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564 CNRS/Université Henri Poincaré-Nancy I, Nancy, France

Abstract

ABSTRACT Viral inactivation and adhesion-aggregation in water are often studied as separate phenomena. When the focus is placed on viral adhesion-aggregation, inactivation is neglected because the phenomena under investigation occur over a short period measured in days. When viral inactivation is studied, adhesion-aggregation phenomena are considered to be negligible because viral survival is traced over several days or months. In the present work, we took a global approach, examining the relative contributions of each of these processes in a complex system composed of groundwater, Poliovirus 1 , and a hydrophobic container (polypropylene) maintained in a dark environment at 20°C. We demonstrated that infectious viral load fell off 2.8 log 10 during the first 20 days. During this time, adhesion was far from negligible because it accounted for most of the decline, 1.5 log 10 . Adhesion was undoubtedly favored by the presence of divalent ions in the groundwater. After 20 days, aggregation may also have been the cause of 0.66 to 0.92 log 10 of viral loss. Finally, viral inactivation was quantitatively the lowest phenomena because it only explained 0.38 to 0.64 log 10 of the viral loss. This study thus clearly demonstrated that estimates of viral survival in a given system must always take into account adhesion-aggregation phenomena which may be responsible for the majority of viral loss in the aqueous phase. Adhesion and aggregation are reversible processes which may lead to an underestimation of viral load in certain studies.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3