Inactivation of MS-2 phage and poliovirus in groundwater

Author:

Alvarez Maria E,Aguilar Miguel,Fountain Alexis,Gonzalez Neyda,Rascon Osvaldo,Saenz David

Abstract

Since temperature affects the inactivation rate of viruses in natural water systems, the aim of this study was to determine if a temperature shift could influence the structural integrity of model viruses. When crude lysates of MS-2 phage were seeded into groundwater microcosms and incubated at 27°C, complete virus inactivation took place in eight days. The temperature was then shifted to 4°C. Three days after the temperature shift, a two-log increase in virus titer (reactivation) occurred. However, when purified MS-2 lysates were added to groundwater microcosms, no reactivation was obtained. No reactivation of poliovirus took place when similar microcosm experiments were done. The sedimentation coefficients of MS-2 shifted from 80S to 58S, 48S, 37S, 32S, and 18S as inactivation proceeded in groundwater and distilled water controls. Similarly, the sedimentation coefficients of polioviruses changed from 156S to 142S, 135S, 117S, 105S, 95S, and 80 S as inactivation took place. There was no correlation between % virus inactivation and % decrease in virions with intact sedimentation coefficients, as reported earlier for poliovirus inactivated by chlorine. The results presented support our hypothesis that virus inactivation proceeds gradually, involving the rearrangement and (or) loss of capsomere components that may eventually lead to the ejection of nucleic acids. The intermediate particles generated as inactivation proceeds may be in a reversibly inactivated state, and may revert back to a fully infectious state when chemical components stabilize the virus particle.Key words: poliovirus, MS-2, groundwater, virus inactivation, virus reactivation.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3