Adsorption of Coxsackievirus in Sediments: Influencing Factors, Kinetics, and Isotherm Modeling

Author:

Li Mengyu1,Zhang Xiaoying1,Su Weiheng2,Cai Fangfei1,Lan Tianshan1,Dai Zhenxue13ORCID

Affiliation:

1. College of Construction Engineering, Jilin University, Changchun 130026, China

2. College of Life Sciences, Jilin University, Changchun 130026, China

3. College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Drinking groundwater contamination by pathogenic viruses represents a serious risk to worldwide public health, particularly for enteric viruses, which exhibit high prevalence and occurrence during outbreaks. Understanding how enteric viruses adsorb in groundwater is essential to protecting human health and ensuring the sustainable use of water resources. The adsorption properties of Coxsackievirus A16 (CA16), a common gastrointestinal virus that spreads through groundwater, were investigated in this work. A typical batch equilibrium approach was used to investigate CA16 adsorption and factors that influence it. In a laboratory recognized nationally as a biosafety level 2 facility, stringent research protocols were followed to guarantee compliance with experimental standards. The variables that were investigated included the size of the sediment particles, the starting concentration of the virus, temperature, pH level, and humic acid content. The findings showed that the CA16 virus was more strongly attracted to finer sediment particles and that its adsorption increased as the size of the sediment particle decreased. Furthermore, it was discovered that higher temperatures improved the CA16 virus’s ability to bind to sediment particles. The pH of the aqueous environment has a significant effect on the effectiveness of virus adsorption; higher effectiveness was seen in acidic environments. Furthermore, it was found that the presence of humic acid decreased the ability of clay to adsorb CA16, suggesting that humic acid has a detrimental influence on clay’s ability to adsorb viruses. The examination of kinetic models demonstrated that, in every scenario examined, the adsorption process of CA16 adhered to the pseudo-second-order kinetics model. Additionally, the Langmuir and Freundlich isotherm models were used to assess the equilibrium data that were collected in this investigation. The outcomes amply proved that the most accurate representation of the adsorption equilibrium was given by the Langmuir isotherm model. The study offered a solid scientific foundation for treating groundwater and creating plans to stop the spread of viruses.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3