Repression of VvpM Protease Expression by Quorum Sensing and the cAMP-cAMP Receptor Protein Complex in Vibrio vulnificus

Author:

Kim Jeong-A1,Lee Mi-Ae1,Jung You-Chul1,Jang Bo-Ram1,Lee Kyu-Ho1

Affiliation:

1. Department of Life Science, Sogang University, Seoul, South Korea

Abstract

ABSTRACT Septicemia-causing Vibrio vulnificus produces at least three exoproteases, VvpE, VvpS, and VvpM, all of which participate in interactions with human cells. Expression of VvpE and VvpS is induced in the stationary phase by multiple transcription factors, including sigma factor S, SmcR, and the cAMP-cAMP receptor protein (cAMP-CRP) complex. Distinct roles of VvpM, such as induction of apoptosis, lead us to hypothesize VvpM expression is different from that of the other exoproteases. Its transcription, which was found to be independent of sigma S, is induced at the early exponential phase and then becomes negligible upon entry into the stationary phase. SmcR and CRP were studied regarding the control of vvpM expression. Transcription of vvpM was repressed by SmcR and cAMP-CRP complex individually, which specifically bound to the regions −2 to +20 and +6 to +27, respectively, relative to the vvpM transcription initiation site. Derepression of vvpM gene expression was 10- to 40-fold greater in an smcR crp double mutant than in single-gene mutants. Therefore, these results show that the expression of V. vulnificus exoproteases is differentially regulated, and in this way, distinct proteases can engage in specific interactions with a host. IMPORTANCE An opportunistic human pathogen, Vibrio vulnificus produces multiple extracellular proteases that are involved in diverse interactions with a host. The total exoproteolytic activity is detected mainly in the supernatants of the high-cell-density cultures. However, some proteolytic activity derived from a metalloprotease, VvpM, was present in the supernatants of the low-cell-density cultures sampled at the early growth period. In this study, we present the regulatory mechanism for VvpM expression via repression by at least two transcription factors. This type of transcriptional regulation is the exact opposite of those for expression of the other V. vulnificus exoproteases. Differential regulation of each exoprotease's production then facilitates the pathogen's participation in the distinct interactions with a host.

Funder

National Research Foundation of Korea

Ministry of Food and Drug Safety

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3