NO-Induced Biofilm Dispersion in Pseudomonas aeruginosa Is Mediated by an MHYT Domain-Coupled Phosphodiesterase

Author:

Li Yi1,Heine Sabrina2,Entian Michael2,Sauer Karin1,Frankenberg-Dinkel Nicole2

Affiliation:

1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA

2. Physiology of Microorganisms, Ruhr-University Bochum, Bochum, Germany

Abstract

ABSTRACT Dispersion is a process used by bacteria to successfully transit from a biofilm to a planktonic growth state and to spawn novel communities in new locales. Alterations in bis -(3′-5′)-cyclic dimeric GMP (c-di-GMP) levels have been shown to be associated with biofilm dispersal in a number of different bacteria. The signaling molecule nitric oxide (NO) is known to induce biofilm dispersion through stimulation of c-di-GMP-degrading phosphodiesterase (PDE) activity. However, no c-di-GMP modulating enzyme directly involved in NO-induced dispersion has yet been described in the opportunistic pathogen Pseudomonas aeruginosa . Here, we characterized MucR (PA1727) and NbdA (PA3311, N O-induced b iofilm d ispersion locus A ), two membrane-bound proteins with identical domain organization consisting of MHYT-GGDEF-EAL, with respect to their role in NO-induced dispersion. Inactivation of mucR impaired biofilm dispersion in response to NO and glutamate, whereas inactivation of nbdA only impaired biofilm dispersion upon exposure to NO. A specific role of NbdA in NO-induced dispersion was supported by increased PDE activity, resulting in decreased c-di-GMP levels in biofilms expressing nbdA upon exposure to NO, a response that was absent in the Δ nbdA strain. Moreover, increased PDE activity was mainly due to a transcriptional activation of nbdA upon addition of NO. Biochemical analyses of recombinant protein variants lacking the membrane-anchored MHYT domain support NbdA being an active PDE. In contrast, MucR displayed both diguanylate cyclase and PDE activity in vitro , which seemed regulated in a growth-dependent manner in vivo . This is the first description of a PDE specifically involved in NO-induced biofilm dispersion in P. aeruginosa .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3