Gene Expression Induced in Escherichia coli O157:H7 upon Exposure to Model Apple Juice

Author:

Bergholz Teresa M.1,Vanaja Sivapriya Kailasan1,Whittam Thomas S.1

Affiliation:

1. Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824

Abstract

ABSTRACT Escherichia coli O157:H7 has caused serious outbreaks of food-borne illness via transmission in a variety of food vehicles, including unpasteurized apple juice, dried salami, and spinach. To understand how this pathogen responds to the multiple stresses of the food environment, we compared global transcription patterns before and after exposure to model apple juice. Transcriptomes of mid-exponential- and stationary-phase cells were evaluated after 10 min in model apple juice (pH 3.5) using microarrays probing 4,886 open reading frames. A total of 331 genes were significantly induced upon exposure of cells to model apple juice, including genes involved in the acid, osmotic, and oxidative stress responses as well as the envelope stress response. Acid and osmotic stress response genes, including asr, osmC, osmB , and osmY , were significantly induced in response to model apple juice. Multiple envelope stress responses were activated as evidenced by increased expression of CpxR and Rcs phosphorelay-controlled genes. Genes controlled by CpxR ( cpxP, degP , and htpX ) were significantly induced 2- to 15-fold upon exposure to apple juice. Inactivation of CpxRA resulted in a significant decrease in survival of O157:H7 in model apple juice compared to the isogenic parent strain. Of the 331 genes induced in model apple juice, 104 are O157-specific genes, including those encoding type three secretion effectors ( espJ, espB, espM2, espL3 , and espZ ). Elucidating the response of O157:H7 to acidic foods provides insight into how this pathogen is able to survive in food matrices and how exposure to foods influences subsequent transmission and virulence.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3