Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system

Author:

Reizer J,Novotny M J,Hengstenberg W,Saier M H

Abstract

Transport of sugars across the cytoplasmic membranes of gram-positive bacteria appears to be regulated by the action of a metabolite-activated, ATP-dependent protein kinase that phosphorylates a seryl residue in the phosphocarrier protein of the phosphotransferase system, HPr. We have developed a quantitative assay for measuring the activity of this enzyme from Streptococcus pyogenes. The product of the in vitro protein kinase-catalyzed reaction was shown to be phosphoseryl-HPr by several independent criteria (rates of hydrolysis in the presence of various agents, detection of serine-phosphate in acid hydrolysates, immunological assay, and electrophoretic migration rates). HPrs isolated from four different gram-positive bacteria (S. pyogenes, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis) were shown to be phosphorylated by the kinase from S. pyogenes. In contrast, Escherichia coli HPr was not a substrate of this enzyme. The soluble kinase released from the particulate fraction of the cells with high salt in the presence of a protease inhibitor was shown to have an approximate molecular weight of 60,000 as estimated by gel filtration. Its activity was dependent on divalent cations, with Mg2+ and Mn2+ being most active. EDTA, Pi, and high concentrations of salt were strongly inhibitory. The enzyme was optimally active at pH 7.0, exhibited high affinity for its substrates, and was dependent on the presence of one of several metabolites. Of these compounds, fructose 1-6-diphosphate was most active, with gluconate 6-phosphate, 2-phosphoglycerate, 2,3-diphosphoglycerate, phosphoenolpyruvate, and pyruvate exhibiting moderate to low stimulatory activities. Other compounds tested, including a variety of sugar phosphates, pyridine nucleotides, and other metabolites were without effect. The ATP-dependent phosphorylation of HPr on the seryl residue was strongly inhibited by phosphoenolpyruvate-dependent phosphorylation of the active histidyl residue of this protein. Treatment of the kinase with diethyl pyrocarbonate strongly inhibited the ATP-dependent phosphorylation activity, although the sulfhydryl reagents N-ethylmaleimide, p-chloromercuribenzoate, and iodoacetate were without effect. These results serve to characterize the HPr (serine) kinase, which apparently regulates the rates of carbohydrate transport in streptococcal cells via the phosphotransferase system. A primary role of this kinase in the control of cellular inducer levels and carbohydrate metabolic rates is proposed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3