Structural Changes and Interactions Involved in the Ca 2+ -Triggered Stabilization of the Cell-Bound Cell Envelope Proteinase in Lactococcus lactis subsp. cremoris SK11

Author:

Exterkate Fred A.1

Affiliation:

1. Department of Flavour and Natural Ingredients, NIZO Food Research, 6710 BA Ede, The Netherlands

Abstract

ABSTRACT The cell-bound cell envelope proteinase (CEP) of the mesophilic cheese-starter organism Lactococcus lactis subsp. cremoris SK11 is protected from rapid thermal inactivation at 25°C by calcium bound to weak binding sites. The interactions with calcium are believed to trigger reversible structural rearrangements which are coupled with changes in specific activity (F. A. Exterkate and A. C. Alting, Appl. Env. Microbiol. 65:1390–1396, 1999). In order to determine the significance of the rearrangements for CEP stability and the nature of the interactions involved, the effects of the net charge present on the enzyme and of different neutral salts were studied with the stable Ca-loaded CEP, the unstable so-called “Ca-free” CEP and with the Ca-free CEP which was stabilized nonspecifically and essentially in its native conformation by the nonionic additive sucrose. The results suggest that strengthening of hydrophobic interactions is conducive to stabilization of the Ca-free CEP. On the other hand, a hydrophobic effect contributes significantly to the stability of the Ca-loaded CEP; a phased salting-in effect by a chaotropic salt suggests a complex inactivation process of this enzyme due to weakening of hydrophobic interactions and involving an intermediate enzyme species. Moreover, a Ca-triggered increase of a relatively significant hydrophobic effect in the sucrose-stabilized Ca-free CEP occurs. It is suggested that in the Ca-free CEP the absence of both local calcium-mediated backbone rigidification and neutralization of negative electrostatic potentials in the weak Ca-binding sites, and in addition the lack of significant hydrophobic stabilization, increase the relative effectiveness of electrostatic repulsive forces on the protein to an extent that causes the observed instability. The conditions in cheese seem to confer stability upon the cell-bound enzyme; its possible involvement in proteolysis throughout the ripening period is discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3